Learning Prototypes and Distances (LPD). A prototype reduction technique
ثبت نشده
چکیده
A prototype reduction algorithm is proposed which simultaneous train both a reduced set of prototypes and a suitable local metric for these prototypes. Starting with an initial selection of a small number of prototypes, it iteratively adjusts both the position (features) of these prototypes and the corresponding local-metric weights. The resulting prototypes/metric combination minimizes a suitable estimation of the classification error probability. Good performance of this algorithm is assessed through experiments with a number of benchmark data sets and through a real two-class classification task which consists of detecting human faces in unrestricted-background pictures.
منابع مشابه
Prototype reduction techniques: A comparison among different approaches
The main two drawbacks of nearest neighbor based classifiers are: high CPU costs when the number of samples in the training set is high and performance extremely sensitive to outliers. Several attempts of overcoming such drawbacks have been proposed in the pattern recognition field aimed at selecting/gen-erating an adequate subset of prototypes from the training set. The problem addressed in th...
متن کاملAdaptation of Prototype Sets in On-line Recognition of Isolated Handwritten Latin Characters
Results on a comparison of adaptive recognition techniques for on-line recognition of handwritten Latin alphabets are presented. The emphasis is on ve adaptive classiication strategies described in this paper. The strategies are based on rst generating a user-independent set of prototype characters and then modifying this set in order to adapt it to each user's personal writing style. The initi...
متن کاملZero-Shot Learning on Semantic Class Prototype Graph.
Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance metric in the semantic embedding space. Ex...
متن کاملLearning a discriminative classifier using shape context distances
For purpose of object recognition, we learn one discriminative classifier based on one prototype, using shape context distances as the feature vector. From multiple prototypes, the outputs of the classifiers are combined using the method called “error correcting output codes”. The overall classifier is tested on benchmark dataset and is shown to outperform existing methods with far fewer protot...
متن کاملImplicit Leadership Theories: A Qualitative Study in an Iranian Organization
This research aims at discovering the traits and abilities which characterize ideal leaders in the minds of employees in an Iranian context. After employing the strategy of phenomenology to reach the components of ideal leadership, 15 tenured middle managers and employees possessing decent management knowledge in the context were interviewed and after theme analysis, global, basic, and organizi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003